# C.U.SHAH UNIVERSITY Summer Examination-2020

### Subject Name : Theories of Ring and Field

| Subject Code : 5SC03TRF1 |                   | Branch: M.Sc. (Mathematics) |           |
|--------------------------|-------------------|-----------------------------|-----------|
| Semester : 3             | Date : 03/03/2020 | Time : 02:30 To 05:30       | Marks :70 |

### **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

#### Attempt the Following questions Q-1 (07) (02)a) Find $[\mathbf{Q}(\sqrt{2}):\mathbf{Q}]$ . If **R** is Euclidean ring and $a, b, c \in \mathbf{R}$ with a|b and b|c then show that a|c. (02)b) Show that any two GCD of *a* and *b* are associate to each other. (02)**c**) d) True/False: If $a, b \in K$ , a and b are algebraic over K then ab is algebraic over K (01) Q-2 Attempt all questions (14) If $\pi$ is a prime element in the Euclidean ring **R** and $\pi | ab$ where $a, b \in \mathbf{R}$ then (05)a) prove that $\pi$ divides at least one of a and b. Let **R** be a Euclidean ring with a and $b \neq 0$ in **R**. If b is not a unit in **R** then prove b) (05)that d(a) < d(ab). State and prove Wilson's theorem. (04)c) OR Q-2 **Attempt all questions** (14)Show that Any two non zero elements a and b in an Euclidean ring **R** have least a) (05)common multiple in **R**. Prove that : Any two elements *a* and *b* in an Euclidean ring *R* have greatest b) (05)common divisor, d.further $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$ . If p is a prime integer of the form 4n + 1, then prove that $p = a^2 + b^2$ for some (04)c) integers *a* and *b*. **Attempt all questions** Q-3 (14) State and prove Eisenstein Criterion. (05)a) Prove that the given polynomial is irreducible over Q. (05)b) $f(x) = \frac{3}{7}x^4 - \frac{2}{7}x^2 + \frac{9}{35}x + \frac{3}{5}$

c) Construct a field containing exactly 125 elements. (04) OR



| Q-3 |          | Attempt all questions<br>If $f(u)$ and $g(u)$ in $\mathbf{Z}[u]$ are minimizing a lumericals then prove that $f(u) g(u)$ is a                                                                         | (14)         |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     | a)       | $f(x)$ and $g(x)$ in $\mathbf{Z}[x]$ are primitive polynomials then prove that $f(x)g(x)$ is a primitive polynomial.                                                                                  | (03)         |
|     | b)       | State and prove Gauss's lemma.                                                                                                                                                                        | (05)         |
|     | c)       | Let F be a field and $f(x) \in F[x]$ having degree either 2 or 3. Then show that $f(x)$ is irreducible over F if and only if $f(x)$ has a zero in F.                                                  | (04)         |
|     |          | SECTION – II                                                                                                                                                                                          |              |
| Q-4 |          | Attempt the Following questions                                                                                                                                                                       | (07)         |
|     | a)       | Define : Solvable group and give example of it.                                                                                                                                                       | (02)         |
|     | b)       | Define : Radical extension                                                                                                                                                                            | (02)         |
|     | c)       | Let $f(x) \in F[x]$ be irreducible. If <i>char</i> $F = 0$ then show that $f(x)$ has no multiple root.                                                                                                | (02)         |
|     | d)       | Write content of the polynomial $x^2 - 2x + 1$ .                                                                                                                                                      | (01)         |
| Q-5 |          | Attempt all questions                                                                                                                                                                                 | (14)         |
|     | a)       | If <i>L</i> is finite extension of <i>K</i> and <i>K</i> is finite extension of <i>F</i> then show that <i>L</i> is finite extension of <i>F</i> . Further show that $[L:F] = [L:K][K:F]$ .           | (06)         |
|     | b)       | Find the degree of splitting field of $x^3 - 2$ over <b>Q</b> .                                                                                                                                       | (06)         |
|     | c)       | Prove that $F[x]$ is a integral domain.                                                                                                                                                               | (02)         |
| o • |          | OR                                                                                                                                                                                                    |              |
| Q-5 |          | Attempt all questions                                                                                                                                                                                 | (14)         |
|     | a)<br>h) | If $a \in K$ is algebraic of degree <i>n</i> over <i>F</i> , then show that $[F(a): F] = n$ .                                                                                                         | (07)         |
|     | D)       | extension field.                                                                                                                                                                                      | (07)         |
| Q-6 |          | Attempt all questions                                                                                                                                                                                 | (14)         |
|     | a)       | If K is a finite extension of F then $O(G(K, F)) \leq [K:F] < \infty$                                                                                                                                 | (05)         |
|     | b)       | Any finite extension of characteristic zero is a simple extension.                                                                                                                                    | (05)         |
|     | c)       | Show that $x^3 - 2 \in Q[x]$ is solvable by radicals over $Q$ .<br>OR                                                                                                                                 | (04)         |
| Q-6 |          | Attempt all Questions                                                                                                                                                                                 | (14)         |
|     | a)       | State and prove Abel's theorem.                                                                                                                                                                       | (05)         |
|     | b)       | Let $n > 1$ be an integer, $F$ be a field which contains all $n^{th}$ roots of unity and $a \in F \setminus \{0\}$ . Let $K$ be the splitting field of $x^n - a \in F[x]$ then show that $K = E(x)$ . | (05)         |
|     | c)       | $F(u)$ where $u \in K$ is any root of $x^n - a$ .<br>Show that the fixed field of $C = K$ is a subfield of $K$                                                                                        | <b>(0</b> 4) |
|     | C)       | Show that the fixed field of $G$ , $\Lambda_G$ , is a subfield of $\Lambda$ .                                                                                                                         | (04)         |

